BERTSentiment#
- class BERTSentiment(config)#
Bases:
Classifier
The BERT Sentiment
Classifier
detects the sentiments of a text fragment using transformer bases pre-trained models.Note
- We provide the following pre-trained models:
DistilBERT: The model predicts the sentiment [“positive”, “negative”] of the input text.
FinBERT: It is a BERT language model finetuned on a financial corpus. The model predicts the sentiment [“positive”, “neutral”, “negative”] of the input text. FinBERT is not installed by default, please install it using ´sudo yum install squirro-finbert´.
Truncation is activated for the execution of model. It shortens the textual input if it exceeds the maximum acceptable input length.
Input - the input field needs to be of type
str
.Output - the output field is filled with data of type
list
[str
]. The list contains only one element.- Parameters:
Example
{ "step": "classifier", "type": "bertsentiment", "model_name":"distilbert", "input_fields": ["normalized_extract"], "output_field": "prediction", "label_field": "" }
Methods Summary
process_doc
(doc)Process a document
Methods Documentation