CosineSimilarityClassifier#

class CosineSimilarityClassifier(config)#

Bases: Classifier

The cosine similarity Classifier uses the cosine similarity to decide which text fragment is closest to which class.

Input - the input field need to be of type list [ float or int ] or numpy.ndarray

Output - the output field is filled with data of type dict { str : float }. The key of the dict is the predicted class name and the value is the cosine distance to the closest reference data point.

Parameters:

type (str) – cosine_similarity

Example

{
    "step": "classifier",
    "type": "cosine_similarity",
    "label_field": "label",
    "input_field": "embedded_extract",
    "output_field": "prediction",
}

Methods Summary

load()

Load a step

process(docs)

Process a set of documents

process_batch(batch)

Process a batch of documents.

save()

Save a step

train(docs)

Train on a step of a set of documents

Methods Documentation

load()#

Load a step

process(docs)#

Process a set of documents

Parameters:

docs (generator(Document)) – Generator of documents

Returns:

Generator of processed documents

Return type:

generator(Document)

process_batch(batch)#

Process a batch of documents. If not defined will default to using self.process_doc for each document in the batch.

Parameters:

batch (list(Document)) – List of documents

Returns:

List of processed documents

Return type:

list(Document)

save()#

Save a step

train(docs)#

Train on a step of a set of documents

Parameters:

docs (generator(Document)) – Generator of documents

Returns:

Generator of processed documents

Return type:

generator(Document)