CosineSimilarityClassifier#
- class CosineSimilarityClassifier(config)#
Bases:
ClassifierThe cosine similarity
Classifieruses the cosine similarity to decide which text fragment is closest to which class.Input - the input field need to be of type
list[floatorint] ornumpy.ndarrayOutput - the output field is filled with data of type
dict{str:float}. The key of thedictis the predicted class name and the value is the cosine distance to the closest reference data point.- Parameters:
type (str) – cosine_similarity
Example
{ "step": "classifier", "type": "cosine_similarity", "label_field": "label", "input_field": "embedded_extract", "output_field": "prediction", }
Methods Summary
load()Load a step
process(docs)Process a set of documents
process_batch(batch)Process a batch of documents.
save()Save a step
train(docs)Train on a step of a set of documents
Methods Documentation
- load()#
Load a step
- process(docs)#
Process a set of documents
- process_batch(batch)#
Process a batch of documents. If not defined will default to using self.process_doc for each document in the batch.
- save()#
Save a step